skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holst, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new technique to apply finite element methods to partial differential equations over curved domains. A change of variables along a coordinate transformation satisfying only low regularity assumptions can translate a Poisson problem over a curved physical domain to a Poisson problem over a polyhedral parametric domain. This greatly simplifies both the geometric setting and the practical implementation, at the cost of having globally rough non-trivial coefficients and data in the parametric Poisson problem. Our main result is that a recently developed broken Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove higher-order finite element convergence rates for the parametric problem. Numerical experiments are given which confirm the predictions of our theory. 
    more » « less
  2. The study of Einstein constraint equations in general relativity naturally leads to considering Riemannian manifolds equipped with nonsmooth metrics. There are several important differential operators on Riemannian manifolds whose definitions depend on the metric: gradient, divergence, Laplacian, covariant derivative, conformal Killing operator, and vector Laplacian, among others. In this article, we study the approximation of such operators, defined using a rough metric, by the corresponding operators defined using a smooth metric. This paves the road to understanding to what extent the nice properties such operators possess, when defined with smooth metric, will transfer over to the corresponding operators defined using a nonsmooth metric. These properties are often assumed to hold when working with rough metrics, but to date the supporting literature is slim. 
    more » « less
  3. In this manuscript, we present a coherent rigorous overview of the main properties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type are scattered through the literature and can be difficult to find. A special emphasis has been put on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar fact that for a general nonsmooth domain Ω in Rn, 0<1, and 1<∞, it is not necessarily true that W1,p(Ω)↪Wt,p(Ω). This has dire consequences in the multiplication properties of Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding the behavior of elliptic differential operators on compact manifolds. In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles, cannot be found in the literature in the generality appearing here. 
    more » « less
  4. We address fundamental aspects in the approximation theory of vector-valued finite element methods, using finite element exterior calculus as a unifying framework. We generalize the Clément interpolant and the Scott-Zhang interpolant to finite element differential forms, and we derive a broken Bramble-Hilbert lemma. Our interpolants require only minimal smoothness assumptions and respect partial boundary conditions. This permits us to state local error estimates in terms of the mesh size. Our theoretical results apply to curl-conforming and divergence-conforming finite element methods over simplicial triangulations. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. Berry, Hugues (Ed.)